Monocular Depth Estimation using Transfer learning-An Overview

نویسندگان

چکیده

Depth estimation is a computer vision technique that critical for autonomous schemes sensing their surroundings and predict own condition. Traditional estimating approaches, such as structure from motion besides stereo similarity, rely on feature communications several views to provide depth information. In the meantime, maps anticipated are scarce. Gathering information via monocular an ill-posed issue, according substantial corpus of deep learning approaches recently suggested. Estimation Monocular with has gotten lot interest in current years, thanks fast expansion neural networks, numerous strategies have been developed solve this issue. study, we want give comprehensive assessment methodologies often used depth. The purpose study look at recent advances learning-based To begin, we'll go through various techniques datasets estimation. A complete overview multiple methods use transfer Network designs, including combinations encoders decoders, offered. addition, models classified. Finally, illustrated.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depth Estimation Using Monocular and Stereo Cues

Depth estimation in computer vision and robotics is most commonly done via stereo vision (stereopsis), in which images from two cameras are used to triangulate and estimate distances. However, there are also numerous monocular visual cues— such as texture variations and gradients, defocus, color/haze, etc.—that have heretofore been little exploited in such systems. Some of these cues apply even...

متن کامل

Self-Supervised Monocular Image Depth Learning and Confidence Estimation

Convolutional Neural Networks (CNNs) need large amounts of data with ground truth annotation, which is a challenging problem that has limited the development and fast deployment of CNNs for many computer vision tasks. We propose a novel framework for depth estimation from monocular images with corresponding confidence in a selfsupervised manner. A fully differential patch-based cost function is...

متن کامل

Towards Domain Independence for Learning-based Monocular Depth Estimation

Modern autonomous mobile robots require a strong understanding of their surroundings in order to safely operate in cluttered and dynamic environments. Monocular depth estimation offers a geometry-independent paradigm to detect free, navigable space with minimum space and power consumption. These represent highly desirable features, especially for micro aerial vehicles. In order to guarantee rob...

متن کامل

Monocular Depth Estimation by Learning from Heterogeneous Datasets

Depth estimation provides essential information to perform autonomous driving and driver assistance. Especially, Monocular Depth Estimation is interesting from a practical point of view, since using a single camera is cheaper than many other options and avoids the need for continuous calibration strategies as required by stereo-vision approaches. State-of-theart methods for Monocular Depth Esti...

متن کامل

3D Pose Estimation using Synthetic Data over Monocular Depth Images

We proposed an approach for human pose estimation over monocular depth images. We augment the data by sampling from existing dataset and generate synthesized images. The generated dataset covers a more continuous pose space than the existing one. We use the generated dataset to train a multi-pathway neural network. We also introduced an orientation and translation invariant embedding for poses ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2021

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202130901069